Рассчитать высоту треугольника со сторонами 133, 125 и 24

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
p=a+b+c2\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
S=p(pa)(pb)(pc)\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
S=12bhb\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
12bhb=p(pa)(pb)(pc)\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
hb=2p(pa)(pb)(pc)b\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
ha=2p(pa)(pb)(pc)a\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
hc=2p(pa)(pb)(pc)c\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
p=133+125+242=141\color{#0000FF}{p = \Large{\frac{133 + 125 + 24}{2}} \normalsize = 141}
hb=2141(141133)(141125)(14124)125=23.2502408\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-133)(141-125)(141-24)}}{125}\normalsize = 23.2502408}
ha=2141(141133)(141125)(14124)133=21.85173\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-133)(141-125)(141-24)}}{133}\normalsize = 21.85173}
hc=2141(141133)(141125)(14124)24=121.095004\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-133)(141-125)(141-24)}}{24}\normalsize = 121.095004}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 125 и 24 равна 23.2502408
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 125 и 24 равна 21.85173
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 125 и 24 равна 121.095004
Ссылка на результат
?n1=133&n2=125&n3=24