Рассчитать высоту треугольника со сторонами 133, 128 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 128 + 33}{2}} \normalsize = 147}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147(147-133)(147-128)(147-33)}}{128}\normalsize = 32.9892117}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147(147-133)(147-128)(147-33)}}{133}\normalsize = 31.7490157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147(147-133)(147-128)(147-33)}}{33}\normalsize = 127.958154}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 128 и 33 равна 32.9892117
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 128 и 33 равна 31.7490157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 128 и 33 равна 127.958154
Ссылка на результат
?n1=133&n2=128&n3=33
Найти высоту треугольника со сторонами 88, 82 и 27
Найти высоту треугольника со сторонами 79, 70 и 51
Найти высоту треугольника со сторонами 131, 124 и 78
Найти высоту треугольника со сторонами 126, 95 и 49
Найти высоту треугольника со сторонами 59, 47 и 30
Найти высоту треугольника со сторонами 132, 94 и 47
Найти высоту треугольника со сторонами 79, 70 и 51
Найти высоту треугольника со сторонами 131, 124 и 78
Найти высоту треугольника со сторонами 126, 95 и 49
Найти высоту треугольника со сторонами 59, 47 и 30
Найти высоту треугольника со сторонами 132, 94 и 47