Рассчитать высоту треугольника со сторонами 133, 80 и 68
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 80 + 68}{2}} \normalsize = 140.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140.5(140.5-133)(140.5-80)(140.5-68)}}{80}\normalsize = 53.7471565}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140.5(140.5-133)(140.5-80)(140.5-68)}}{133}\normalsize = 32.3291167}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140.5(140.5-133)(140.5-80)(140.5-68)}}{68}\normalsize = 63.2319489}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 80 и 68 равна 53.7471565
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 80 и 68 равна 32.3291167
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 80 и 68 равна 63.2319489
Ссылка на результат
?n1=133&n2=80&n3=68
Найти высоту треугольника со сторонами 62, 45 и 25
Найти высоту треугольника со сторонами 145, 91 и 72
Найти высоту треугольника со сторонами 119, 112 и 109
Найти высоту треугольника со сторонами 125, 85 и 84
Найти высоту треугольника со сторонами 137, 102 и 78
Найти высоту треугольника со сторонами 133, 113 и 81
Найти высоту треугольника со сторонами 145, 91 и 72
Найти высоту треугольника со сторонами 119, 112 и 109
Найти высоту треугольника со сторонами 125, 85 и 84
Найти высоту треугольника со сторонами 137, 102 и 78
Найти высоту треугольника со сторонами 133, 113 и 81