Рассчитать высоту треугольника со сторонами 133, 96 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{133 + 96 + 57}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-133)(143-96)(143-57)}}{96}\normalsize = 50.0869903}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-133)(143-96)(143-57)}}{133}\normalsize = 36.1530156}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-133)(143-96)(143-57)}}{57}\normalsize = 84.3570363}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 133, 96 и 57 равна 50.0869903
Высота треугольника опущенная с вершины A на сторону BC со сторонами 133, 96 и 57 равна 36.1530156
Высота треугольника опущенная с вершины C на сторону AB со сторонами 133, 96 и 57 равна 84.3570363
Ссылка на результат
?n1=133&n2=96&n3=57
Найти высоту треугольника со сторонами 95, 72 и 69
Найти высоту треугольника со сторонами 124, 93 и 89
Найти высоту треугольника со сторонами 58, 45 и 18
Найти высоту треугольника со сторонами 150, 123 и 68
Найти высоту треугольника со сторонами 102, 61 и 57
Найти высоту треугольника со сторонами 146, 144 и 8
Найти высоту треугольника со сторонами 124, 93 и 89
Найти высоту треугольника со сторонами 58, 45 и 18
Найти высоту треугольника со сторонами 150, 123 и 68
Найти высоту треугольника со сторонами 102, 61 и 57
Найти высоту треугольника со сторонами 146, 144 и 8