Рассчитать высоту треугольника со сторонами 134, 129 и 10

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{134 + 129 + 10}{2}} \normalsize = 136.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-129)(136.5-10)}}{129}\normalsize = 8.82170457}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-129)(136.5-10)}}{134}\normalsize = 8.49253649}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{136.5(136.5-134)(136.5-129)(136.5-10)}}{10}\normalsize = 113.799989}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 134, 129 и 10 равна 8.82170457
Высота треугольника опущенная с вершины A на сторону BC со сторонами 134, 129 и 10 равна 8.49253649
Высота треугольника опущенная с вершины C на сторону AB со сторонами 134, 129 и 10 равна 113.799989
Ссылка на результат
?n1=134&n2=129&n3=10