Рассчитать высоту треугольника со сторонами 136, 102 и 64

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 102 + 64}{2}} \normalsize = 151}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151(151-136)(151-102)(151-64)}}{102}\normalsize = 60.9286553}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151(151-136)(151-102)(151-64)}}{136}\normalsize = 45.6964915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151(151-136)(151-102)(151-64)}}{64}\normalsize = 97.1050444}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 102 и 64 равна 60.9286553
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 102 и 64 равна 45.6964915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 102 и 64 равна 97.1050444
Ссылка на результат
?n1=136&n2=102&n3=64