Рассчитать высоту треугольника со сторонами 136, 122 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 122 + 61}{2}} \normalsize = 159.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{159.5(159.5-136)(159.5-122)(159.5-61)}}{122}\normalsize = 60.9983642}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{159.5(159.5-136)(159.5-122)(159.5-61)}}{136}\normalsize = 54.7191209}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{159.5(159.5-136)(159.5-122)(159.5-61)}}{61}\normalsize = 121.996728}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 122 и 61 равна 60.9983642
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 122 и 61 равна 54.7191209
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 122 и 61 равна 121.996728
Ссылка на результат
?n1=136&n2=122&n3=61
Найти высоту треугольника со сторонами 60, 57 и 21
Найти высоту треугольника со сторонами 93, 93 и 86
Найти высоту треугольника со сторонами 112, 89 и 70
Найти высоту треугольника со сторонами 106, 94 и 78
Найти высоту треугольника со сторонами 103, 95 и 43
Найти высоту треугольника со сторонами 137, 106 и 37
Найти высоту треугольника со сторонами 93, 93 и 86
Найти высоту треугольника со сторонами 112, 89 и 70
Найти высоту треугольника со сторонами 106, 94 и 78
Найти высоту треугольника со сторонами 103, 95 и 43
Найти высоту треугольника со сторонами 137, 106 и 37