Рассчитать высоту треугольника со сторонами 136, 123 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 123 + 39}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-136)(149-123)(149-39)}}{123}\normalsize = 38.2712556}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-136)(149-123)(149-39)}}{136}\normalsize = 34.6129738}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-136)(149-123)(149-39)}}{39}\normalsize = 120.701652}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 123 и 39 равна 38.2712556
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 123 и 39 равна 34.6129738
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 123 и 39 равна 120.701652
Ссылка на результат
?n1=136&n2=123&n3=39
Найти высоту треугольника со сторонами 143, 103 и 89
Найти высоту треугольника со сторонами 142, 103 и 82
Найти высоту треугольника со сторонами 120, 110 и 50
Найти высоту треугольника со сторонами 75, 65 и 18
Найти высоту треугольника со сторонами 109, 88 и 49
Найти высоту треугольника со сторонами 133, 132 и 40
Найти высоту треугольника со сторонами 142, 103 и 82
Найти высоту треугольника со сторонами 120, 110 и 50
Найти высоту треугольника со сторонами 75, 65 и 18
Найти высоту треугольника со сторонами 109, 88 и 49
Найти высоту треугольника со сторонами 133, 132 и 40