Рассчитать высоту треугольника со сторонами 136, 124 и 108
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 124 + 108}{2}} \normalsize = 184}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{184(184-136)(184-124)(184-108)}}{124}\normalsize = 102.35764}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{184(184-136)(184-124)(184-108)}}{136}\normalsize = 93.3260831}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{184(184-136)(184-124)(184-108)}}{108}\normalsize = 117.521734}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 124 и 108 равна 102.35764
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 124 и 108 равна 93.3260831
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 124 и 108 равна 117.521734
Ссылка на результат
?n1=136&n2=124&n3=108
Найти высоту треугольника со сторонами 67, 46 и 44
Найти высоту треугольника со сторонами 137, 115 и 97
Найти высоту треугольника со сторонами 71, 44 и 44
Найти высоту треугольника со сторонами 100, 84 и 83
Найти высоту треугольника со сторонами 119, 94 и 80
Найти высоту треугольника со сторонами 99, 80 и 43
Найти высоту треугольника со сторонами 137, 115 и 97
Найти высоту треугольника со сторонами 71, 44 и 44
Найти высоту треугольника со сторонами 100, 84 и 83
Найти высоту треугольника со сторонами 119, 94 и 80
Найти высоту треугольника со сторонами 99, 80 и 43