Рассчитать высоту треугольника со сторонами 136, 125 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 125 + 32}{2}} \normalsize = 146.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{146.5(146.5-136)(146.5-125)(146.5-32)}}{125}\normalsize = 31.1354694}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{146.5(146.5-136)(146.5-125)(146.5-32)}}{136}\normalsize = 28.6171594}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{146.5(146.5-136)(146.5-125)(146.5-32)}}{32}\normalsize = 121.622927}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 125 и 32 равна 31.1354694
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 125 и 32 равна 28.6171594
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 125 и 32 равна 121.622927
Ссылка на результат
?n1=136&n2=125&n3=32
Найти высоту треугольника со сторонами 102, 91 и 66
Найти высоту треугольника со сторонами 65, 43 и 30
Найти высоту треугольника со сторонами 128, 112 и 87
Найти высоту треугольника со сторонами 92, 71 и 70
Найти высоту треугольника со сторонами 93, 86 и 14
Найти высоту треугольника со сторонами 117, 103 и 50
Найти высоту треугольника со сторонами 65, 43 и 30
Найти высоту треугольника со сторонами 128, 112 и 87
Найти высоту треугольника со сторонами 92, 71 и 70
Найти высоту треугольника со сторонами 93, 86 и 14
Найти высоту треугольника со сторонами 117, 103 и 50