Рассчитать высоту треугольника со сторонами 136, 132 и 125
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 132 + 125}{2}} \normalsize = 196.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{196.5(196.5-136)(196.5-132)(196.5-125)}}{132}\normalsize = 112.188388}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{196.5(196.5-136)(196.5-132)(196.5-125)}}{136}\normalsize = 108.888729}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{196.5(196.5-136)(196.5-132)(196.5-125)}}{125}\normalsize = 118.470938}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 132 и 125 равна 112.188388
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 132 и 125 равна 108.888729
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 132 и 125 равна 118.470938
Ссылка на результат
?n1=136&n2=132&n3=125
Найти высоту треугольника со сторонами 129, 118 и 60
Найти высоту треугольника со сторонами 86, 86 и 54
Найти высоту треугольника со сторонами 89, 76 и 48
Найти высоту треугольника со сторонами 95, 92 и 31
Найти высоту треугольника со сторонами 126, 80 и 60
Найти высоту треугольника со сторонами 120, 113 и 27
Найти высоту треугольника со сторонами 86, 86 и 54
Найти высоту треугольника со сторонами 89, 76 и 48
Найти высоту треугольника со сторонами 95, 92 и 31
Найти высоту треугольника со сторонами 126, 80 и 60
Найти высоту треугольника со сторонами 120, 113 и 27