Рассчитать высоту треугольника со сторонами 136, 95 и 90
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{136 + 95 + 90}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-136)(160.5-95)(160.5-90)}}{95}\normalsize = 89.7102691}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-136)(160.5-95)(160.5-90)}}{136}\normalsize = 62.6652615}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-136)(160.5-95)(160.5-90)}}{90}\normalsize = 94.6941729}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 136, 95 и 90 равна 89.7102691
Высота треугольника опущенная с вершины A на сторону BC со сторонами 136, 95 и 90 равна 62.6652615
Высота треугольника опущенная с вершины C на сторону AB со сторонами 136, 95 и 90 равна 94.6941729
Ссылка на результат
?n1=136&n2=95&n3=90
Найти высоту треугольника со сторонами 64, 53 и 21
Найти высоту треугольника со сторонами 115, 84 и 38
Найти высоту треугольника со сторонами 138, 137 и 19
Найти высоту треугольника со сторонами 137, 103 и 65
Найти высоту треугольника со сторонами 140, 107 и 58
Найти высоту треугольника со сторонами 65, 57 и 29
Найти высоту треугольника со сторонами 115, 84 и 38
Найти высоту треугольника со сторонами 138, 137 и 19
Найти высоту треугольника со сторонами 137, 103 и 65
Найти высоту треугольника со сторонами 140, 107 и 58
Найти высоту треугольника со сторонами 65, 57 и 29