Рассчитать высоту треугольника со сторонами 137, 100 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 100 + 86}{2}} \normalsize = 161.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161.5(161.5-137)(161.5-100)(161.5-86)}}{100}\normalsize = 85.7255608}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161.5(161.5-137)(161.5-100)(161.5-86)}}{137}\normalsize = 62.573402}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161.5(161.5-137)(161.5-100)(161.5-86)}}{86}\normalsize = 99.6808847}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 100 и 86 равна 85.7255608
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 100 и 86 равна 62.573402
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 100 и 86 равна 99.6808847
Ссылка на результат
?n1=137&n2=100&n3=86
Найти высоту треугольника со сторонами 148, 119 и 32
Найти высоту треугольника со сторонами 146, 135 и 98
Найти высоту треугольника со сторонами 80, 51 и 47
Найти высоту треугольника со сторонами 117, 82 и 61
Найти высоту треугольника со сторонами 118, 89 и 43
Найти высоту треугольника со сторонами 113, 98 и 42
Найти высоту треугольника со сторонами 146, 135 и 98
Найти высоту треугольника со сторонами 80, 51 и 47
Найти высоту треугольника со сторонами 117, 82 и 61
Найти высоту треугольника со сторонами 118, 89 и 43
Найти высоту треугольника со сторонами 113, 98 и 42