Рассчитать высоту треугольника со сторонами 137, 103 и 57

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 103 + 57}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-137)(148.5-103)(148.5-57)}}{103}\normalsize = 51.7751259}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-137)(148.5-103)(148.5-57)}}{137}\normalsize = 38.9258246}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-137)(148.5-103)(148.5-57)}}{57}\normalsize = 93.5585608}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 103 и 57 равна 51.7751259
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 103 и 57 равна 38.9258246
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 103 и 57 равна 93.5585608
Ссылка на результат
?n1=137&n2=103&n3=57