Рассчитать высоту треугольника со сторонами 137, 113 и 57

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 113 + 57}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-137)(153.5-113)(153.5-57)}}{113}\normalsize = 55.6850844}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-137)(153.5-113)(153.5-57)}}{137}\normalsize = 45.9300331}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-137)(153.5-113)(153.5-57)}}{57}\normalsize = 110.393238}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 113 и 57 равна 55.6850844
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 113 и 57 равна 45.9300331
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 113 и 57 равна 110.393238
Ссылка на результат
?n1=137&n2=113&n3=57