Рассчитать высоту треугольника со сторонами 137, 127 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{137 + 127 + 42}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-137)(153-127)(153-42)}}{127}\normalsize = 41.8581611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-137)(153-127)(153-42)}}{137}\normalsize = 38.8028208}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-137)(153-127)(153-42)}}{42}\normalsize = 126.571106}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 137, 127 и 42 равна 41.8581611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 137, 127 и 42 равна 38.8028208
Высота треугольника опущенная с вершины C на сторону AB со сторонами 137, 127 и 42 равна 126.571106
Ссылка на результат
?n1=137&n2=127&n3=42
Найти высоту треугольника со сторонами 145, 117 и 82
Найти высоту треугольника со сторонами 46, 32 и 30
Найти высоту треугольника со сторонами 103, 71 и 61
Найти высоту треугольника со сторонами 125, 122 и 56
Найти высоту треугольника со сторонами 135, 126 и 71
Найти высоту треугольника со сторонами 128, 111 и 106
Найти высоту треугольника со сторонами 46, 32 и 30
Найти высоту треугольника со сторонами 103, 71 и 61
Найти высоту треугольника со сторонами 125, 122 и 56
Найти высоту треугольника со сторонами 135, 126 и 71
Найти высоту треугольника со сторонами 128, 111 и 106