Рассчитать высоту треугольника со сторонами 138, 103 и 39

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 103 + 39}{2}} \normalsize = 140}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{140(140-138)(140-103)(140-39)}}{103}\normalsize = 19.8624737}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{140(140-138)(140-103)(140-39)}}{138}\normalsize = 14.8248898}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{140(140-138)(140-103)(140-39)}}{39}\normalsize = 52.4573024}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 103 и 39 равна 19.8624737
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 103 и 39 равна 14.8248898
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 103 и 39 равна 52.4573024
Ссылка на результат
?n1=138&n2=103&n3=39