Рассчитать высоту треугольника со сторонами 138, 113 и 76
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 113 + 76}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-113)(163.5-76)}}{113}\normalsize = 75.9679202}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-113)(163.5-76)}}{138}\normalsize = 62.2056158}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-138)(163.5-113)(163.5-76)}}{76}\normalsize = 112.952302}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 113 и 76 равна 75.9679202
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 113 и 76 равна 62.2056158
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 113 и 76 равна 112.952302
Ссылка на результат
?n1=138&n2=113&n3=76
Найти высоту треугольника со сторонами 71, 69 и 34
Найти высоту треугольника со сторонами 68, 63 и 31
Найти высоту треугольника со сторонами 121, 77 и 72
Найти высоту треугольника со сторонами 76, 69 и 61
Найти высоту треугольника со сторонами 95, 83 и 50
Найти высоту треугольника со сторонами 53, 47 и 14
Найти высоту треугольника со сторонами 68, 63 и 31
Найти высоту треугольника со сторонами 121, 77 и 72
Найти высоту треугольника со сторонами 76, 69 и 61
Найти высоту треугольника со сторонами 95, 83 и 50
Найти высоту треугольника со сторонами 53, 47 и 14