Рассчитать высоту треугольника со сторонами 138, 114 и 65
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 114 + 65}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-138)(158.5-114)(158.5-65)}}{114}\normalsize = 64.5063575}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-138)(158.5-114)(158.5-65)}}{138}\normalsize = 53.2878605}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-138)(158.5-114)(158.5-65)}}{65}\normalsize = 113.134227}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 114 и 65 равна 64.5063575
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 114 и 65 равна 53.2878605
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 114 и 65 равна 113.134227
Ссылка на результат
?n1=138&n2=114&n3=65
Найти высоту треугольника со сторонами 110, 88 и 44
Найти высоту треугольника со сторонами 129, 119 и 80
Найти высоту треугольника со сторонами 59, 48 и 14
Найти высоту треугольника со сторонами 149, 83 и 71
Найти высоту треугольника со сторонами 117, 117 и 5
Найти высоту треугольника со сторонами 137, 89 и 51
Найти высоту треугольника со сторонами 129, 119 и 80
Найти высоту треугольника со сторонами 59, 48 и 14
Найти высоту треугольника со сторонами 149, 83 и 71
Найти высоту треугольника со сторонами 117, 117 и 5
Найти высоту треугольника со сторонами 137, 89 и 51