Рассчитать высоту треугольника со сторонами 138, 120 и 67

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{138 + 120 + 67}{2}} \normalsize = 162.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{162.5(162.5-138)(162.5-120)(162.5-67)}}{120}\normalsize = 66.9968872}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{162.5(162.5-138)(162.5-120)(162.5-67)}}{138}\normalsize = 58.2581628}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{162.5(162.5-138)(162.5-120)(162.5-67)}}{67}\normalsize = 119.994425}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 138, 120 и 67 равна 66.9968872
Высота треугольника опущенная с вершины A на сторону BC со сторонами 138, 120 и 67 равна 58.2581628
Высота треугольника опущенная с вершины C на сторону AB со сторонами 138, 120 и 67 равна 119.994425
Ссылка на результат
?n1=138&n2=120&n3=67