Рассчитать высоту треугольника со сторонами 139, 100 и 72

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 100 + 72}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-139)(155.5-100)(155.5-72)}}{100}\normalsize = 68.9647067}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-139)(155.5-100)(155.5-72)}}{139}\normalsize = 49.6148969}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-139)(155.5-100)(155.5-72)}}{72}\normalsize = 95.7843149}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 100 и 72 равна 68.9647067
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 100 и 72 равна 49.6148969
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 100 и 72 равна 95.7843149
Ссылка на результат
?n1=139&n2=100&n3=72