Рассчитать высоту треугольника со сторонами 139, 116 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 116 + 112}{2}} \normalsize = 183.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{183.5(183.5-139)(183.5-116)(183.5-112)}}{116}\normalsize = 108.236802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{183.5(183.5-139)(183.5-116)(183.5-112)}}{139}\normalsize = 90.3271157}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{183.5(183.5-139)(183.5-116)(183.5-112)}}{112}\normalsize = 112.102402}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 116 и 112 равна 108.236802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 116 и 112 равна 90.3271157
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 116 и 112 равна 112.102402
Ссылка на результат
?n1=139&n2=116&n3=112
Найти высоту треугольника со сторонами 78, 55 и 55
Найти высоту треугольника со сторонами 106, 75 и 69
Найти высоту треугольника со сторонами 86, 62 и 57
Найти высоту треугольника со сторонами 104, 95 и 65
Найти высоту треугольника со сторонами 93, 90 и 5
Найти высоту треугольника со сторонами 137, 120 и 115
Найти высоту треугольника со сторонами 106, 75 и 69
Найти высоту треугольника со сторонами 86, 62 и 57
Найти высоту треугольника со сторонами 104, 95 и 65
Найти высоту треугольника со сторонами 93, 90 и 5
Найти высоту треугольника со сторонами 137, 120 и 115