Рассчитать высоту треугольника со сторонами 139, 121 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 121 + 74}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-139)(167-121)(167-74)}}{121}\normalsize = 73.9268611}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-139)(167-121)(167-74)}}{139}\normalsize = 64.3535985}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-139)(167-121)(167-74)}}{74}\normalsize = 120.880408}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 121 и 74 равна 73.9268611
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 121 и 74 равна 64.3535985
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 121 и 74 равна 120.880408
Ссылка на результат
?n1=139&n2=121&n3=74
Найти высоту треугольника со сторонами 101, 67 и 54
Найти высоту треугольника со сторонами 128, 91 и 75
Найти высоту треугольника со сторонами 119, 117 и 78
Найти высоту треугольника со сторонами 104, 79 и 60
Найти высоту треугольника со сторонами 133, 110 и 29
Найти высоту треугольника со сторонами 130, 118 и 78
Найти высоту треугольника со сторонами 128, 91 и 75
Найти высоту треугольника со сторонами 119, 117 и 78
Найти высоту треугольника со сторонами 104, 79 и 60
Найти высоту треугольника со сторонами 133, 110 и 29
Найти высоту треугольника со сторонами 130, 118 и 78