Рассчитать высоту треугольника со сторонами 139, 130 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 130 + 27}{2}} \normalsize = 148}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148(148-139)(148-130)(148-27)}}{130}\normalsize = 26.2040062}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148(148-139)(148-130)(148-27)}}{139}\normalsize = 24.5073439}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148(148-139)(148-130)(148-27)}}{27}\normalsize = 126.167437}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 130 и 27 равна 26.2040062
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 130 и 27 равна 24.5073439
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 130 и 27 равна 126.167437
Ссылка на результат
?n1=139&n2=130&n3=27
Найти высоту треугольника со сторонами 69, 43 и 33
Найти высоту треугольника со сторонами 149, 96 и 67
Найти высоту треугольника со сторонами 107, 95 и 51
Найти высоту треугольника со сторонами 68, 63 и 25
Найти высоту треугольника со сторонами 135, 83 и 76
Найти высоту треугольника со сторонами 124, 81 и 76
Найти высоту треугольника со сторонами 149, 96 и 67
Найти высоту треугольника со сторонами 107, 95 и 51
Найти высоту треугольника со сторонами 68, 63 и 25
Найти высоту треугольника со сторонами 135, 83 и 76
Найти высоту треугольника со сторонами 124, 81 и 76