Рассчитать высоту треугольника со сторонами 139, 138 и 124

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 138 + 124}{2}} \normalsize = 200.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{200.5(200.5-139)(200.5-138)(200.5-124)}}{138}\normalsize = 111.279812}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{200.5(200.5-139)(200.5-138)(200.5-124)}}{139}\normalsize = 110.479237}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{200.5(200.5-139)(200.5-138)(200.5-124)}}{124}\normalsize = 123.843661}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 138 и 124 равна 111.279812
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 138 и 124 равна 110.479237
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 138 и 124 равна 123.843661
Ссылка на результат
?n1=139&n2=138&n3=124