Рассчитать высоту треугольника со сторонами 139, 89 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{139 + 89 + 75}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-89)(151.5-75)}}{89}\normalsize = 67.6195129}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-89)(151.5-75)}}{139}\normalsize = 43.2959471}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-139)(151.5-89)(151.5-75)}}{75}\normalsize = 80.241822}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 139, 89 и 75 равна 67.6195129
Высота треугольника опущенная с вершины A на сторону BC со сторонами 139, 89 и 75 равна 43.2959471
Высота треугольника опущенная с вершины C на сторону AB со сторонами 139, 89 и 75 равна 80.241822
Ссылка на результат
?n1=139&n2=89&n3=75
Найти высоту треугольника со сторонами 122, 81 и 45
Найти высоту треугольника со сторонами 94, 93 и 33
Найти высоту треугольника со сторонами 109, 66 и 65
Найти высоту треугольника со сторонами 97, 91 и 72
Найти высоту треугольника со сторонами 133, 98 и 80
Найти высоту треугольника со сторонами 128, 96 и 49
Найти высоту треугольника со сторонами 94, 93 и 33
Найти высоту треугольника со сторонами 109, 66 и 65
Найти высоту треугольника со сторонами 97, 91 и 72
Найти высоту треугольника со сторонами 133, 98 и 80
Найти высоту треугольника со сторонами 128, 96 и 49