Рассчитать высоту треугольника со сторонами 140, 101 и 63

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 101 + 63}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-140)(152-101)(152-63)}}{101}\normalsize = 56.9772036}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-140)(152-101)(152-63)}}{140}\normalsize = 41.1049826}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-140)(152-101)(152-63)}}{63}\normalsize = 91.3444057}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 101 и 63 равна 56.9772036
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 101 и 63 равна 41.1049826
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 101 и 63 равна 91.3444057
Ссылка на результат
?n1=140&n2=101&n3=63