Рассчитать высоту треугольника со сторонами 140, 121 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 121 + 89}{2}} \normalsize = 175}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{175(175-140)(175-121)(175-89)}}{121}\normalsize = 88.1543561}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{175(175-140)(175-121)(175-89)}}{140}\normalsize = 76.1905506}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{175(175-140)(175-121)(175-89)}}{89}\normalsize = 119.850304}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 121 и 89 равна 88.1543561
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 121 и 89 равна 76.1905506
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 121 и 89 равна 119.850304
Ссылка на результат
?n1=140&n2=121&n3=89
Найти высоту треугольника со сторонами 147, 133 и 89
Найти высоту треугольника со сторонами 47, 45 и 13
Найти высоту треугольника со сторонами 38, 26 и 16
Найти высоту треугольника со сторонами 119, 108 и 19
Найти высоту треугольника со сторонами 73, 53 и 44
Найти высоту треугольника со сторонами 122, 105 и 44
Найти высоту треугольника со сторонами 47, 45 и 13
Найти высоту треугольника со сторонами 38, 26 и 16
Найти высоту треугольника со сторонами 119, 108 и 19
Найти высоту треугольника со сторонами 73, 53 и 44
Найти высоту треугольника со сторонами 122, 105 и 44