Рассчитать высоту треугольника со сторонами 140, 124 и 93

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 124 + 93}{2}} \normalsize = 178.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{178.5(178.5-140)(178.5-124)(178.5-93)}}{124}\normalsize = 91.2723209}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{178.5(178.5-140)(178.5-124)(178.5-93)}}{140}\normalsize = 80.8411985}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{178.5(178.5-140)(178.5-124)(178.5-93)}}{93}\normalsize = 121.696428}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 124 и 93 равна 91.2723209
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 124 и 93 равна 80.8411985
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 124 и 93 равна 121.696428
Ссылка на результат
?n1=140&n2=124&n3=93