Рассчитать высоту треугольника со сторонами 140, 127 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 127 + 61}{2}} \normalsize = 164}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{164(164-140)(164-127)(164-61)}}{127}\normalsize = 60.9920589}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{164(164-140)(164-127)(164-61)}}{140}\normalsize = 55.3285106}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{164(164-140)(164-127)(164-61)}}{61}\normalsize = 126.983467}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 127 и 61 равна 60.9920589
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 127 и 61 равна 55.3285106
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 127 и 61 равна 126.983467
Ссылка на результат
?n1=140&n2=127&n3=61
Найти высоту треугольника со сторонами 147, 125 и 57
Найти высоту треугольника со сторонами 143, 142 и 72
Найти высоту треугольника со сторонами 133, 120 и 18
Найти высоту треугольника со сторонами 119, 116 и 31
Найти высоту треугольника со сторонами 69, 44 и 34
Найти высоту треугольника со сторонами 61, 56 и 39
Найти высоту треугольника со сторонами 143, 142 и 72
Найти высоту треугольника со сторонами 133, 120 и 18
Найти высоту треугольника со сторонами 119, 116 и 31
Найти высоту треугольника со сторонами 69, 44 и 34
Найти высоту треугольника со сторонами 61, 56 и 39