Рассчитать высоту треугольника со сторонами 140, 128 и 95

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 128 + 95}{2}} \normalsize = 181.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{181.5(181.5-140)(181.5-128)(181.5-95)}}{128}\normalsize = 92.2502037}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{181.5(181.5-140)(181.5-128)(181.5-95)}}{140}\normalsize = 84.3430434}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{181.5(181.5-140)(181.5-128)(181.5-95)}}{95}\normalsize = 124.295011}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 128 и 95 равна 92.2502037
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 128 и 95 равна 84.3430434
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 128 и 95 равна 124.295011
Ссылка на результат
?n1=140&n2=128&n3=95