Рассчитать высоту треугольника со сторонами 140, 129 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 129 + 36}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-129)(152.5-36)}}{129}\normalsize = 35.4182507}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-129)(152.5-36)}}{140}\normalsize = 32.6353881}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-140)(152.5-129)(152.5-36)}}{36}\normalsize = 126.915398}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 129 и 36 равна 35.4182507
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 129 и 36 равна 32.6353881
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 129 и 36 равна 126.915398
Ссылка на результат
?n1=140&n2=129&n3=36
Найти высоту треугольника со сторонами 144, 123 и 56
Найти высоту треугольника со сторонами 139, 103 и 77
Найти высоту треугольника со сторонами 95, 82 и 14
Найти высоту треугольника со сторонами 134, 88 и 51
Найти высоту треугольника со сторонами 71, 69 и 53
Найти высоту треугольника со сторонами 147, 144 и 15
Найти высоту треугольника со сторонами 139, 103 и 77
Найти высоту треугольника со сторонами 95, 82 и 14
Найти высоту треугольника со сторонами 134, 88 и 51
Найти высоту треугольника со сторонами 71, 69 и 53
Найти высоту треугольника со сторонами 147, 144 и 15