Рассчитать высоту треугольника со сторонами 140, 130 и 115
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 130 + 115}{2}} \normalsize = 192.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{192.5(192.5-140)(192.5-130)(192.5-115)}}{130}\normalsize = 107.639711}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{192.5(192.5-140)(192.5-130)(192.5-115)}}{140}\normalsize = 99.9511599}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{192.5(192.5-140)(192.5-130)(192.5-115)}}{115}\normalsize = 121.679673}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 130 и 115 равна 107.639711
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 130 и 115 равна 99.9511599
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 130 и 115 равна 121.679673
Ссылка на результат
?n1=140&n2=130&n3=115
Найти высоту треугольника со сторонами 131, 100 и 97
Найти высоту треугольника со сторонами 115, 112 и 75
Найти высоту треугольника со сторонами 125, 124 и 121
Найти высоту треугольника со сторонами 148, 99 и 58
Найти высоту треугольника со сторонами 128, 119 и 72
Найти высоту треугольника со сторонами 141, 110 и 43
Найти высоту треугольника со сторонами 115, 112 и 75
Найти высоту треугольника со сторонами 125, 124 и 121
Найти высоту треугольника со сторонами 148, 99 и 58
Найти высоту треугольника со сторонами 128, 119 и 72
Найти высоту треугольника со сторонами 141, 110 и 43