Рассчитать высоту треугольника со сторонами 140, 136 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 136 + 32}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-140)(154-136)(154-32)}}{136}\normalsize = 31.9986483}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-140)(154-136)(154-32)}}{140}\normalsize = 31.0844012}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-140)(154-136)(154-32)}}{32}\normalsize = 135.994255}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 136 и 32 равна 31.9986483
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 136 и 32 равна 31.0844012
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 136 и 32 равна 135.994255
Ссылка на результат
?n1=140&n2=136&n3=32
Найти высоту треугольника со сторонами 142, 111 и 38
Найти высоту треугольника со сторонами 95, 84 и 60
Найти высоту треугольника со сторонами 77, 40 и 38
Найти высоту треугольника со сторонами 127, 78 и 66
Найти высоту треугольника со сторонами 68, 49 и 36
Найти высоту треугольника со сторонами 145, 140 и 46
Найти высоту треугольника со сторонами 95, 84 и 60
Найти высоту треугольника со сторонами 77, 40 и 38
Найти высоту треугольника со сторонами 127, 78 и 66
Найти высоту треугольника со сторонами 68, 49 и 36
Найти высоту треугольника со сторонами 145, 140 и 46