Рассчитать высоту треугольника со сторонами 140, 138 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 138 + 43}{2}} \normalsize = 160.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-138)(160.5-43)}}{138}\normalsize = 42.7440383}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-138)(160.5-43)}}{140}\normalsize = 42.1334092}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{160.5(160.5-140)(160.5-138)(160.5-43)}}{43}\normalsize = 137.178542}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 138 и 43 равна 42.7440383
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 138 и 43 равна 42.1334092
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 138 и 43 равна 137.178542
Ссылка на результат
?n1=140&n2=138&n3=43
Найти высоту треугольника со сторонами 99, 99 и 57
Найти высоту треугольника со сторонами 117, 94 и 39
Найти высоту треугольника со сторонами 78, 69 и 63
Найти высоту треугольника со сторонами 93, 82 и 21
Найти высоту треугольника со сторонами 105, 98 и 9
Найти высоту треугольника со сторонами 94, 94 и 85
Найти высоту треугольника со сторонами 117, 94 и 39
Найти высоту треугольника со сторонами 78, 69 и 63
Найти высоту треугольника со сторонами 93, 82 и 21
Найти высоту треугольника со сторонами 105, 98 и 9
Найти высоту треугольника со сторонами 94, 94 и 85