Рассчитать высоту треугольника со сторонами 140, 76 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 76 + 67}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-140)(141.5-76)(141.5-67)}}{76}\normalsize = 26.7817554}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-140)(141.5-76)(141.5-67)}}{140}\normalsize = 14.5386672}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-140)(141.5-76)(141.5-67)}}{67}\normalsize = 30.3793046}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 76 и 67 равна 26.7817554
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 76 и 67 равна 14.5386672
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 76 и 67 равна 30.3793046
Ссылка на результат
?n1=140&n2=76&n3=67
Найти высоту треугольника со сторонами 148, 82 и 80
Найти высоту треугольника со сторонами 145, 141 и 12
Найти высоту треугольника со сторонами 135, 103 и 57
Найти высоту треугольника со сторонами 150, 134 и 62
Найти высоту треугольника со сторонами 140, 112 и 48
Найти высоту треугольника со сторонами 68, 64 и 47
Найти высоту треугольника со сторонами 145, 141 и 12
Найти высоту треугольника со сторонами 135, 103 и 57
Найти высоту треугольника со сторонами 150, 134 и 62
Найти высоту треугольника со сторонами 140, 112 и 48
Найти высоту треугольника со сторонами 68, 64 и 47