Рассчитать высоту треугольника со сторонами 140, 90 и 86
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 90 + 86}{2}} \normalsize = 158}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158(158-140)(158-90)(158-86)}}{90}\normalsize = 82.9226145}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158(158-140)(158-90)(158-86)}}{140}\normalsize = 53.3073951}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158(158-140)(158-90)(158-86)}}{86}\normalsize = 86.7794803}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 90 и 86 равна 82.9226145
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 90 и 86 равна 53.3073951
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 90 и 86 равна 86.7794803
Ссылка на результат
?n1=140&n2=90&n3=86
Найти высоту треугольника со сторонами 120, 90 и 52
Найти высоту треугольника со сторонами 136, 109 и 34
Найти высоту треугольника со сторонами 59, 47 и 24
Найти высоту треугольника со сторонами 106, 104 и 70
Найти высоту треугольника со сторонами 71, 66 и 33
Найти высоту треугольника со сторонами 136, 136 и 39
Найти высоту треугольника со сторонами 136, 109 и 34
Найти высоту треугольника со сторонами 59, 47 и 24
Найти высоту треугольника со сторонами 106, 104 и 70
Найти высоту треугольника со сторонами 71, 66 и 33
Найти высоту треугольника со сторонами 136, 136 и 39