Рассчитать высоту треугольника со сторонами 140, 98 и 89
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{140 + 98 + 89}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-140)(163.5-98)(163.5-89)}}{98}\normalsize = 88.3680997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-140)(163.5-98)(163.5-89)}}{140}\normalsize = 61.8576698}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-140)(163.5-98)(163.5-89)}}{89}\normalsize = 97.3041997}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 140, 98 и 89 равна 88.3680997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 140, 98 и 89 равна 61.8576698
Высота треугольника опущенная с вершины C на сторону AB со сторонами 140, 98 и 89 равна 97.3041997
Ссылка на результат
?n1=140&n2=98&n3=89
Найти высоту треугольника со сторонами 126, 114 и 13
Найти высоту треугольника со сторонами 11, 7 и 6
Найти высоту треугольника со сторонами 127, 109 и 75
Найти высоту треугольника со сторонами 65, 64 и 51
Найти высоту треугольника со сторонами 69, 65 и 46
Найти высоту треугольника со сторонами 131, 93 и 39
Найти высоту треугольника со сторонами 11, 7 и 6
Найти высоту треугольника со сторонами 127, 109 и 75
Найти высоту треугольника со сторонами 65, 64 и 51
Найти высоту треугольника со сторонами 69, 65 и 46
Найти высоту треугольника со сторонами 131, 93 и 39