Рассчитать высоту треугольника со сторонами 141, 100 и 85
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 100 + 85}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-141)(163-100)(163-85)}}{100}\normalsize = 83.9561886}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-141)(163-100)(163-85)}}{141}\normalsize = 59.5433962}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-141)(163-100)(163-85)}}{85}\normalsize = 98.7719866}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 100 и 85 равна 83.9561886
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 100 и 85 равна 59.5433962
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 100 и 85 равна 98.7719866
Ссылка на результат
?n1=141&n2=100&n3=85
Найти высоту треугольника со сторонами 141, 99 и 85
Найти высоту треугольника со сторонами 89, 76 и 19
Найти высоту треугольника со сторонами 122, 121 и 2
Найти высоту треугольника со сторонами 83, 74 и 60
Найти высоту треугольника со сторонами 127, 82 и 77
Найти высоту треугольника со сторонами 133, 79 и 64
Найти высоту треугольника со сторонами 89, 76 и 19
Найти высоту треугольника со сторонами 122, 121 и 2
Найти высоту треугольника со сторонами 83, 74 и 60
Найти высоту треугольника со сторонами 127, 82 и 77
Найти высоту треугольника со сторонами 133, 79 и 64