Рассчитать высоту треугольника со сторонами 141, 101 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 101 + 92}{2}} \normalsize = 167}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{167(167-141)(167-101)(167-92)}}{101}\normalsize = 91.802843}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{167(167-141)(167-101)(167-92)}}{141}\normalsize = 65.7594833}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{167(167-141)(167-101)(167-92)}}{92}\normalsize = 100.783556}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 101 и 92 равна 91.802843
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 101 и 92 равна 65.7594833
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 101 и 92 равна 100.783556
Ссылка на результат
?n1=141&n2=101&n3=92
Найти высоту треугольника со сторонами 144, 138 и 36
Найти высоту треугольника со сторонами 123, 97 и 44
Найти высоту треугольника со сторонами 121, 100 и 96
Найти высоту треугольника со сторонами 105, 71 и 53
Найти высоту треугольника со сторонами 84, 58 и 38
Найти высоту треугольника со сторонами 136, 129 и 129
Найти высоту треугольника со сторонами 123, 97 и 44
Найти высоту треугольника со сторонами 121, 100 и 96
Найти высоту треугольника со сторонами 105, 71 и 53
Найти высоту треугольника со сторонами 84, 58 и 38
Найти высоту треугольника со сторонами 136, 129 и 129