Рассчитать высоту треугольника со сторонами 141, 121 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 121 + 33}{2}} \normalsize = 147.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-121)(147.5-33)}}{121}\normalsize = 28.1918122}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-121)(147.5-33)}}{141}\normalsize = 24.1929736}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{147.5(147.5-141)(147.5-121)(147.5-33)}}{33}\normalsize = 103.369978}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 121 и 33 равна 28.1918122
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 121 и 33 равна 24.1929736
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 121 и 33 равна 103.369978
Ссылка на результат
?n1=141&n2=121&n3=33
Найти высоту треугольника со сторонами 134, 110 и 53
Найти высоту треугольника со сторонами 137, 124 и 55
Найти высоту треугольника со сторонами 103, 97 и 51
Найти высоту треугольника со сторонами 115, 61 и 59
Найти высоту треугольника со сторонами 55, 51 и 48
Найти высоту треугольника со сторонами 108, 76 и 53
Найти высоту треугольника со сторонами 137, 124 и 55
Найти высоту треугольника со сторонами 103, 97 и 51
Найти высоту треугольника со сторонами 115, 61 и 59
Найти высоту треугольника со сторонами 55, 51 и 48
Найти высоту треугольника со сторонами 108, 76 и 53