Рассчитать высоту треугольника со сторонами 141, 124 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 124 + 39}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-141)(152-124)(152-39)}}{124}\normalsize = 37.0975035}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-141)(152-124)(152-39)}}{141}\normalsize = 32.6247549}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-141)(152-124)(152-39)}}{39}\normalsize = 117.951037}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 124 и 39 равна 37.0975035
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 124 и 39 равна 32.6247549
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 124 и 39 равна 117.951037
Ссылка на результат
?n1=141&n2=124&n3=39
Найти высоту треугольника со сторонами 126, 126 и 1
Найти высоту треугольника со сторонами 110, 105 и 80
Найти высоту треугольника со сторонами 61, 40 и 33
Найти высоту треугольника со сторонами 36, 35 и 29
Найти высоту треугольника со сторонами 117, 116 и 31
Найти высоту треугольника со сторонами 50, 43 и 36
Найти высоту треугольника со сторонами 110, 105 и 80
Найти высоту треугольника со сторонами 61, 40 и 33
Найти высоту треугольника со сторонами 36, 35 и 29
Найти высоту треугольника со сторонами 117, 116 и 31
Найти высоту треугольника со сторонами 50, 43 и 36