Рассчитать высоту треугольника со сторонами 141, 136 и 96

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 136 + 96}{2}} \normalsize = 186.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{186.5(186.5-141)(186.5-136)(186.5-96)}}{136}\normalsize = 91.5811689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{186.5(186.5-141)(186.5-136)(186.5-96)}}{141}\normalsize = 88.3336097}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{186.5(186.5-141)(186.5-136)(186.5-96)}}{96}\normalsize = 129.739989}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 136 и 96 равна 91.5811689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 136 и 96 равна 88.3336097
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 136 и 96 равна 129.739989
Ссылка на результат
?n1=141&n2=136&n3=96