Рассчитать высоту треугольника со сторонами 141, 140 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 140 + 61}{2}} \normalsize = 171}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{171(171-141)(171-140)(171-61)}}{140}\normalsize = 59.7499893}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{171(171-141)(171-140)(171-61)}}{141}\normalsize = 59.3262305}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{171(171-141)(171-140)(171-61)}}{61}\normalsize = 137.131123}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 140 и 61 равна 59.7499893
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 140 и 61 равна 59.3262305
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 140 и 61 равна 137.131123
Ссылка на результат
?n1=141&n2=140&n3=61
Найти высоту треугольника со сторонами 142, 111 и 88
Найти высоту треугольника со сторонами 94, 66 и 39
Найти высоту треугольника со сторонами 96, 95 и 3
Найти высоту треугольника со сторонами 147, 100 и 48
Найти высоту треугольника со сторонами 144, 133 и 28
Найти высоту треугольника со сторонами 123, 116 и 115
Найти высоту треугольника со сторонами 94, 66 и 39
Найти высоту треугольника со сторонами 96, 95 и 3
Найти высоту треугольника со сторонами 147, 100 и 48
Найти высоту треугольника со сторонами 144, 133 и 28
Найти высоту треугольника со сторонами 123, 116 и 115