Рассчитать высоту треугольника со сторонами 141, 74 и 71
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{141 + 74 + 71}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-141)(143-74)(143-71)}}{74}\normalsize = 32.2160348}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-141)(143-74)(143-71)}}{141}\normalsize = 16.9077062}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-141)(143-74)(143-71)}}{71}\normalsize = 33.5772757}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 141, 74 и 71 равна 32.2160348
Высота треугольника опущенная с вершины A на сторону BC со сторонами 141, 74 и 71 равна 16.9077062
Высота треугольника опущенная с вершины C на сторону AB со сторонами 141, 74 и 71 равна 33.5772757
Ссылка на результат
?n1=141&n2=74&n3=71
Найти высоту треугольника со сторонами 145, 88 и 81
Найти высоту треугольника со сторонами 126, 96 и 44
Найти высоту треугольника со сторонами 145, 114 и 111
Найти высоту треугольника со сторонами 134, 105 и 69
Найти высоту треугольника со сторонами 137, 99 и 66
Найти высоту треугольника со сторонами 127, 111 и 46
Найти высоту треугольника со сторонами 126, 96 и 44
Найти высоту треугольника со сторонами 145, 114 и 111
Найти высоту треугольника со сторонами 134, 105 и 69
Найти высоту треугольника со сторонами 137, 99 и 66
Найти высоту треугольника со сторонами 127, 111 и 46