Рассчитать высоту треугольника со сторонами 142, 109 и 53

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 109 + 53}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-142)(152-109)(152-53)}}{109}\normalsize = 46.6742251}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-142)(152-109)(152-53)}}{142}\normalsize = 35.8273982}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-142)(152-109)(152-53)}}{53}\normalsize = 95.9903876}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 109 и 53 равна 46.6742251
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 109 и 53 равна 35.8273982
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 109 и 53 равна 95.9903876
Ссылка на результат
?n1=142&n2=109&n3=53