Рассчитать высоту треугольника со сторонами 142, 120 и 43

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 120 + 43}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-142)(152.5-120)(152.5-43)}}{120}\normalsize = 39.7857053}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-142)(152.5-120)(152.5-43)}}{142}\normalsize = 33.6217228}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-142)(152.5-120)(152.5-43)}}{43}\normalsize = 111.029875}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 120 и 43 равна 39.7857053
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 120 и 43 равна 33.6217228
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 120 и 43 равна 111.029875
Ссылка на результат
?n1=142&n2=120&n3=43