Рассчитать высоту треугольника со сторонами 142, 122 и 50
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 122 + 50}{2}} \normalsize = 157}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157(157-142)(157-122)(157-50)}}{122}\normalsize = 48.6845917}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157(157-142)(157-122)(157-50)}}{142}\normalsize = 41.8276069}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157(157-142)(157-122)(157-50)}}{50}\normalsize = 118.790404}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 122 и 50 равна 48.6845917
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 122 и 50 равна 41.8276069
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 122 и 50 равна 118.790404
Ссылка на результат
?n1=142&n2=122&n3=50
Найти высоту треугольника со сторонами 131, 130 и 65
Найти высоту треугольника со сторонами 66, 63 и 44
Найти высоту треугольника со сторонами 147, 129 и 124
Найти высоту треугольника со сторонами 67, 51 и 30
Найти высоту треугольника со сторонами 150, 123 и 29
Найти высоту треугольника со сторонами 144, 144 и 74
Найти высоту треугольника со сторонами 66, 63 и 44
Найти высоту треугольника со сторонами 147, 129 и 124
Найти высоту треугольника со сторонами 67, 51 и 30
Найти высоту треугольника со сторонами 150, 123 и 29
Найти высоту треугольника со сторонами 144, 144 и 74