Рассчитать высоту треугольника со сторонами 142, 89 и 66
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{142 + 89 + 66}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-142)(148.5-89)(148.5-66)}}{89}\normalsize = 48.9153709}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-142)(148.5-89)(148.5-66)}}{142}\normalsize = 30.6582255}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-142)(148.5-89)(148.5-66)}}{66}\normalsize = 65.9616366}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 142, 89 и 66 равна 48.9153709
Высота треугольника опущенная с вершины A на сторону BC со сторонами 142, 89 и 66 равна 30.6582255
Высота треугольника опущенная с вершины C на сторону AB со сторонами 142, 89 и 66 равна 65.9616366
Ссылка на результат
?n1=142&n2=89&n3=66
Найти высоту треугольника со сторонами 129, 91 и 59
Найти высоту треугольника со сторонами 38, 28 и 16
Найти высоту треугольника со сторонами 100, 81 и 50
Найти высоту треугольника со сторонами 81, 76 и 26
Найти высоту треугольника со сторонами 93, 54 и 50
Найти высоту треугольника со сторонами 131, 113 и 41
Найти высоту треугольника со сторонами 38, 28 и 16
Найти высоту треугольника со сторонами 100, 81 и 50
Найти высоту треугольника со сторонами 81, 76 и 26
Найти высоту треугольника со сторонами 93, 54 и 50
Найти высоту треугольника со сторонами 131, 113 и 41