Рассчитать высоту треугольника со сторонами 143, 105 и 100
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{143 + 105 + 100}{2}} \normalsize = 174}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174(174-143)(174-105)(174-100)}}{105}\normalsize = 99.9623766}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174(174-143)(174-105)(174-100)}}{143}\normalsize = 73.3989479}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174(174-143)(174-105)(174-100)}}{100}\normalsize = 104.960495}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 143, 105 и 100 равна 99.9623766
Высота треугольника опущенная с вершины A на сторону BC со сторонами 143, 105 и 100 равна 73.3989479
Высота треугольника опущенная с вершины C на сторону AB со сторонами 143, 105 и 100 равна 104.960495
Ссылка на результат
?n1=143&n2=105&n3=100
Найти высоту треугольника со сторонами 103, 85 и 70
Найти высоту треугольника со сторонами 99, 72 и 59
Найти высоту треугольника со сторонами 95, 78 и 25
Найти высоту треугольника со сторонами 111, 92 и 49
Найти высоту треугольника со сторонами 143, 101 и 56
Найти высоту треугольника со сторонами 109, 88 и 23
Найти высоту треугольника со сторонами 99, 72 и 59
Найти высоту треугольника со сторонами 95, 78 и 25
Найти высоту треугольника со сторонами 111, 92 и 49
Найти высоту треугольника со сторонами 143, 101 и 56
Найти высоту треугольника со сторонами 109, 88 и 23